We study the function approximation aspect of distributionally robust optimization (DRO) based on probability metrics, such as the Wasserstein and the maximum mean discrepancy. Our analysis leverages the insight that existing DRO paradigms hinge on function majorants such as the Moreau-Yosida regularization (supremal convolution). Deviating from those, this paper instead proposes robust learning algorithms based on smooth function approximation and interpolation. Our methods are simple in forms and apply to general loss functions without knowing functional norms a priori. Furthermore, we analyze the DRO risk bound decomposition by leveraging smooth function approximators and the convergence rate for empirical kernel mean embedding.


翻译:我们根据瓦塞斯坦和最大平均差异等概率度量法研究分布稳健优化(DRO)的功能近似方面。我们的分析利用现有DRO模式取决于功能主要方(如Moreau-Yosida ) 的洞察力,如Moreau-Yosida 正规化(超大变迁 ) 。从这些角度看,本文提出了基于平稳功能近似和内插的稳健学习算法。我们的方法形式简单,适用于一般损失函数,而没有事先了解功能规范。此外,我们通过利用平稳功能近似器和实验内核嵌入的趋同率来分析DRO风险约束分解。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员