We consider the kernel completion problem with the presence of multiple views in the data. In this context the data samples can be fully missing in some views, creating missing columns and rows to the kernel matrices that are calculated individually for each view. We propose to solve the problem of completing the kernel matrices with Cross-View Kernel Transfer (CVKT) procedure, in which the features of the other views are transformed to represent the view under consideration. The transformations are learned with kernel alignment to the known part of the kernel matrix, allowing for finding generalizable structures in the kernel matrix under completion. Its missing values can then be predicted with the data available in other views. We illustrate the benefits of our approach with simulated data, multivariate digits dataset and multi-view dataset on gesture classification, as well as with real biological datasets from studies of pattern formation in early \textit{Drosophila melanogaster} embryogenesis.
翻译:我们考虑数据中存在多种观点的内核完成问题。 在这方面,数据样本在某些观点中可能完全缺失,造成每个观点各自计算的内核矩阵缺失的列和行。我们提议通过跨视图内核传输(CVKT)程序解决完成内核矩阵的问题,即将其他观点的特征转换为所考虑的观点。通过内核与已知的内核矩阵部分的对齐来学习这些转变,以便能够在即将完成的内核矩阵中找到可普遍适用的结构。然后,可以通过其他观点中的现有数据预测其缺失值。我们用模拟数据、多变量数字数据集和关于姿态分类的多视图数据集,以及早期textit{Drosophila melanogaster}胚胎形成模式研究中的真实生物数据集来说明我们的方法的好处。