In this paper we address feedback strategies for an autonomous virtual trainer. First, a pilot study was conducted to identify and specify feedback strategies for assisting participants in performing a given task. The task involved sorting virtual cubes according to areas of countries displayed on them. Two feedback strategies were specified. The first provides correctness feedback by fully correcting user responses at each stage of the task, and the second provides suggestive feedback by only notifying if and how a response can be corrected. Both strategies were implemented in a virtual training system and empirically evaluated. The correctness feedback strategy was preferred by the participants, was more effective time-wise, and was more effective in improving task performance skills. The overall system was also rated comparable to hypothetically performing the same task with real interactions.


翻译:在本文中,我们讨论了自主虚拟培训员的反馈战略。首先,进行了一项试点研究,以确定和具体规定反馈战略,以协助参与者执行某项任务。任务涉及根据所显示的国家领域对虚拟立方体进行分类。有两个反馈战略得到了具体阐述。第一个战略通过在任务的每一阶段充分纠正用户的反馈,提供正确性反馈,第二个战略仅通过通知何时以及如何纠正反应提供建议性反馈。这两个战略都是在虚拟培训系统中执行的,并经过经验评估。正确的反馈战略得到了参与者的偏好,更符合时间需要,在提高任务执行技能方面更加有效。整个系统还被评为与假设地以实际互动方式执行同样任务相近。

0
下载
关闭预览

相关内容

【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月8日
Arxiv
8+阅读 · 2018年1月30日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员