The model of camera that was used to capture a particular photographic image (model attribution) is typically inferred from high-frequency model-specific artifacts present within the image. Model anonymization is the process of transforming these artifacts such that the apparent capture model is changed. We propose a conditional adversarial approach for learning such transformations. In contrast to previous works, we cast model anonymization as the process of transforming both high and low spatial frequency information. We augment the objective with the loss from a pre-trained dual-stream model attribution classifier, which constrains the generative network to transform the full range of artifacts. Quantitative comparisons demonstrate the efficacy of our framework in a restrictive non-interactive black-box setting.


翻译:用于捕捉特定摄影图像的相机模型(模型属性)通常从图像中存在的高频模型特定文物中推断出来。模型匿名化是这些文物的转化过程,以便改变表面捕获模型。我们提出了学习这类变异的有条件对抗方法。与以往的作品相比,我们将模型匿名化作为转换高空和低空频信息的过程。我们从一个预先训练的双流模型属性分类器中增加了目标,该分解器限制了基因化网络以改变全系列文物。定量比较表明我们框架在限制性的非互动黑盒设置中的功效。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
已删除
将门创投
4+阅读 · 2019年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员