Dual quaternions now have wide applications in robotics, 3D motion modelling and control, and computer graphics. The magnitudes of dual quaternions and the 2-norms of dual quaternion vectors are dual numbers. A total order was defined for dual numbers. Thus, dual quaternion optimization problems, where objective and constraint functions have dual quaternion variables and dual number function values naturally arise. In this paper, we show that several common dual quaternion functions, such as the power function, the magnitude function, the 2-norm function and the kth largest eigenvalue function of dual quaternion Hermitian matrices, are standard dual quaternion functions, i.e., the standard parts of their function values depend upon only the standard parts of the dual quaternion variables. Furthermore, the sum, product, minimum, maximum and composite functions of two standard dual functions, the logarithm and the exponential of a standard unit dual quaternion functions, are still standard dual quaternion functions. To solve a standard dual quaternion optimization problem, we only need to solve two quaternion optimization problems. Thus, if the dual quaternion functions are standard, the related dual quaternion optimization problem is solvable.
翻译:双四向和双四向矢量的 2- 向量是双数。 共定义了双数的全序。 因此, 双四优化问题, 目标功能和限制功能具有双四变量变量和双倍数函数的自然产生。 在本文中, 我们显示, 几个共同的双四函数, 如电函数、 音量函数、 2- 调函数和 最大双四值函数 。 双四位函数和双四向矢量矢量的2- 向量函数是标准的双四元函数, 即其函数的标准部分仅取决于双四元变量的标准部分。 此外, 两个标准双倍函数的总数、 产品、 最小值、 最大值 和 复合函数的复合功能, 即双倍四元函数的对数和 倍数, 仍然是标准的双元元元函数 。 要解决标准的双倍四元优化问题, 我们只需要解决两个标准的双倍四元优化问题, 因此, 双重四重优化是双倍标准的问题。 因此, 双重四重优化是双倍优化问题。