Torsades de pointes (TdP) is an irregular heart rhythm as a side effect of drugs and may cause sudden cardiac death. A machine learning model that can accurately identify drug TdP risk is necessary. This study uses multinomial logistic regression models to predict three-class drug TdP risks based on datasets generated from rabbit ventricular wedge assay experiments. The training-test split and five-fold cross-validation provide unbiased measurements for prediction accuracy. We utilize bootstrap to construct a 95% confidence interval for prediction accuracy. The model interpretation is further demonstrated by permutation predictor importance. Our study offers an interpretable modeling method suitable for drug TdP risk prediction. Our method can be easily generalized to broader applications of drug side effect assessment.
翻译:Torades de pointes(TdP)是一种不正常的心脏节奏,作为药物的副作用,并可能导致突发性心脏死亡。一个机器学习模型可以准确地识别药物TdP的风险是必要的。本研究使用多种名义后勤回归模型预测三类药物TdP的风险,该模型以兔子腹腔湿质实验产生的数据集为基础。培训测试的分解和五倍交叉验证为预测准确性提供了不偏倚的测量。我们利用靴杆来构建一个95%的置信度间隔,以便预测准确性。模型解释还进一步表现为变异预测的重要性。我们的研究提供了一种适合药物TdP风险预测的可解释的模型方法。我们的方法可以很容易地推广到更广泛的药物侧效应评估的应用中。