In this paper, we propose XG-BoT, an explainable deep graph neural network model for botnet node detection. The proposed model is mainly composed of a botnet detector and an explainer for automatic forensics. The XG-BoT detector can effectively detect malicious botnet nodes under large-scale networks. Specifically, it utilizes a grouped reversible residual connection with a graph isomorphism network to learn expressive node representations from the botnet communication graphs. The explainer in XG-BoT can perform automatic network forensics by highlighting suspicious network flows and related botnet nodes. We evaluated XG-BoT based on real-world, large-scale botnet network graph datasets. Overall, XG-BoT is able to outperform the state-of-the-art in terms of key evaluation metrics. In addition, we show that the XG-BoT explainer can generate useful explanations based on GNNExplainer and saliency map for automatic network forensics.
翻译:在本文中,我们提出XG-BOT,这是一个用于肉网节点探测的可解释的深图型神经网络模型。提议的模型主要由一个肉网探测器和一个自动法证解释器组成。XG-BoT探测器可以在大型网络下有效检测恶意肉网节点。具体地说,它利用一个图形的反向残余连接,从肉网通信图中学习显微节表示。XG-BoT的解释器可以通过突出可疑的网络流和相关肉网节点来进行自动网络法证。我们根据真实世界、大规模肉网网络图解数据集对XG-BoT进行了评估。总体来说,XG-BoT能够在关键评价指标方面超越最新技术。此外,我们表明,XG-BoT解释器可以根据GNNExplainer和显性网络自动法证地图进行有用的解释。