Graph neural networks (GNNs) have emerged as a state-of-the-art approach to model and draw inferences from large scale graph-structured data in various application settings such as social networking. The primary goal of a GNN is to learn an embedding for each graph node in a dataset that encodes both the node features and the local graph structure around the node. Embeddings generated by a GNN for a graph node are unique to that GNN. Prior work has shown that GNNs are prone to model extraction attacks. Model extraction attacks and defenses have been explored extensively in other non-graph settings. While detecting or preventing model extraction appears to be difficult, deterring them via effective ownership verification techniques offer a potential defense. In non-graph settings, fingerprinting models, or the data used to build them, have shown to be a promising approach toward ownership verification. We present GrOVe, a state-of-the-art GNN model fingerprinting scheme that, given a target model and a suspect model, can reliably determine if the suspect model was trained independently of the target model or if it is a surrogate of the target model obtained via model extraction. We show that GrOVe can distinguish between surrogate and independent models even when the independent model uses the same training dataset and architecture as the original target model. Using six benchmark datasets and three model architectures, we show that consistently achieves low false-positive and false-negative rates. We demonstrate that is robust against known fingerprint evasion techniques while remaining computationally efficient.


翻译:摘要:图神经网络(GNN)已成为模型和从各种应用环境(如社交网络)中提取推断的最先进方法。 GNN 的主要目标是为数据集中的每个图形节点学习嵌入,该嵌入编码节点特征和节点周围的本地图结构。GNN 生成的节点嵌入对该 GNN 是独一无二的。以前的工作表明 GNN 易受模型提取攻击。在其他非图形 setting 的情况下,已经广泛探讨了模型提取攻击和防御。尽管检测或预防模型提取似乎很困难,但是通过有效的所有权验证技术来阻止它们提供了一种潜在的防御方式。在非图 setting 中,对模型进行指纹化,或者对用于构建它们的数据进行指纹化,已经显示出是一种有前途的所有权验证方法。我们提出 GrOVe,一种最先进的 GNN 模型指纹方案,该方案可以在给定目标模型和嫌疑模型的情况下,可靠地确定嫌疑模型是否独立于目标模型进行了训练,或者是否是通过模型提取获得的目标模型的代理。我们还演示了 GrOVe 可以区分代理和独立模型,即使独立模型使用与原始目标模型相同的训练数据集和架构。使用六个基准数据集和三个模型架构,我们展示了 GrOVe 可以始终实现较低的误报率和误拒率。我们证明其对已知的指纹逃避技术具有鲁棒性,同时保持计算效率。

0
下载
关闭预览

相关内容

【Google AI】鲁棒图神经网络,Robust Graph Neural Networks
专知会员服务
37+阅读 · 2022年3月9日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
八篇NeurIPS 2019【图神经网络(GNN)】相关论文
专知会员服务
43+阅读 · 2020年1月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
AAAI 2022 | ProtGNN:自解释图神经网络络
PaperWeekly
0+阅读 · 2022年8月22日
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
Link prediction | 三篇SEAL相关工作小结
AINLP
47+阅读 · 2020年11月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关论文
Arxiv
0+阅读 · 2023年5月31日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
26+阅读 · 2018年2月27日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员