Stacking is a widely used model averaging technique that yields asymptotically optimal prediction among all linear averages. We show that stacking is most effective when the model predictive performance is heterogeneous in inputs, so that we can further improve the stacked mixture with a hierarchical model. With the input-varying yet partially-pooled model weights, hierarchical stacking improves average and conditional predictions. Our Bayesian formulation includes constant-weight (complete-pooling) stacking as a special case. We generalize to incorporate discrete and continuous inputs, other structured priors, and time-series and longitudinal data. We demonstrate on several applied problems.
翻译:堆叠是一种广泛使用的模型平均技术,在所有线性平均数中产生无症状的最佳预测。我们表明,当模型预测性能在投入方面各异时,堆叠最为有效,这样我们就可以用一个等级模型进一步改进堆叠的混合物。随着输入式但部分组合的模型重量,层层堆叠提高了平均和有条件的预测。我们的贝叶斯式配方包括作为特例的不变重量(完全组合式)堆叠。我们一般地将离散和连续的投入、其他结构前科以及时间序列和纵向数据纳入其中。我们演示了几个应用的问题。