Federated learning (FL) enables distributed computation of machine learning models over various disparate, remote data sources, without requiring to transfer any individual data to a centralized location. This results in an improved generalizability of models and efficient scaling of computation as more sources and larger datasets are added to the federation. Nevertheless, recent membership attacks show that private or sensitive personal data can sometimes be leaked or inferred when model parameters or summary statistics are shared with a central site, requiring improved security solutions. In this work, we propose a framework for secure FL using fully-homomorphic encryption (FHE). Specifically, we use the CKKS construction, an approximate, floating point compatible scheme that benefits from ciphertext packing and rescaling. In our evaluation on large-scale brain MRI datasets, we use our proposed secure FL framework to train a deep learning model to predict a person's age from distributed MRI scans, a common benchmarking task, and demonstrate that there is no degradation in the learning performance between the encrypted and non-encrypted federated models.
翻译:联邦学习(FL)使得可以对各种不同的远程数据源的机器学习模型进行分布式计算,而无需将任何个人数据转移到集中地点,从而改进了模型的通用性,并有效地扩大了计算规模,因为联邦增加了更多的来源和更大的数据集。然而,最近的会员攻击表明,当模型参数或摘要统计与中央网站共享时,有时可以泄漏或推断私人或敏感个人数据,这需要改进安全解决方案。在这项工作中,我们提出了一个使用全光谱加密(FHE)的安全 FL框架。具体地说,我们使用了CKKS的构造,即一个近似、浮动点兼容的方案,从加密和非加密的反馈模型中受益。在我们对大型脑MRI数据集的评估中,我们使用我们拟议的安全FL框架培训一个深层学习模型,用分布式的 MRI 扫描预测一个人的年龄,这是一个共同的基准任务,并表明加密和非加密的反馈模型的学习性能没有退化。