Finding the minimum value in an unordered database is a common and fundamental task in computer science. However, the optimal classical deterministic algorithm can find the minimum value with a time complexity that grows linearly with the number of elements in the database. In this paper, we present the proposal of a quantum algorithm for finding the minimum value of a database, which is quadratically faster than its best classical analogs. We assume a Quantum Random Access Memory (QRAM) that stores values from a database and perform an iterative search based on an oracle whose role is to limit the searched values by controlling the states of the most significant qubits. A complexity analysis was performed in order to demonstrate the advantage of this quantum algorithm over its classical counterparts. Furthermore, we demonstrate how the proposed algorithm would be used in an unsupervised machine learning task through a quantum version of the K-means algorithm.
翻译:在未经排序的数据库中找到最小值是计算机科学中一项共同和根本的任务。 但是, 最理想的经典确定性算法可以找到最起码的值, 其时间复杂性随着数据库中元素数量的增加而线性地增长。 在本文中, 我们提出一个量子算法建议, 以找到数据库的最小值, 其二次速度比其最好的经典模拟速度快。 我们假设一个量子随机存取内存( QRAM), 它将数值存储在数据库中, 并基于一个神谕进行迭代搜索, 其作用是通过控制最重要的 ⁇ 的状态来限制所搜索值。 进行了一项复杂分析, 以展示该量子算法相对于其经典对等单位的优势 。 此外, 我们演示了如何通过 K- point 算法的量子版本在不受监督的机器学习任务中使用拟议的算法 。