In this work, we propose an efficient minimax optimal global optimization algorithm for multivariate Lipschitz continuous functions. To evaluate the performance of our approach, we utilize the average regret instead of the traditional simple regret, which, as we show, is not suitable for use in the multivariate non-convex optimization because of the inherent hardness of the problem itself. Since we study the average regret of the algorithm, our results directly imply a bound for the simple regret as well. Instead of constructing lower bounding proxy functions, our method utilizes a predetermined query creation rule, which makes it computationally superior to the Piyavskii-Shubert variants. We show that our algorithm achieves an average regret bound of $O(L\sqrt{n}T^{-\frac{1}{n}})$ for the optimization of an $n$-dimensional $L$-Lipschitz continuous objective in a time horizon $T$, which we show to be minimax optimal.
翻译:在这项工作中,我们建议了一种高效的小型最佳全球优化算法,用于多变量 Lipschitz 连续函数。 为了评估我们的方法的性能,我们使用平均遗憾而不是传统的简单遗憾,正如我们所显示的那样,由于问题本身固有的难度,这种遗憾不适合用于多变量的非convex优化。由于我们研究了该算法的平均遗憾,我们的结果也直接意味着简单的遗憾。我们的方法不是建立较低的约束性代理功能,而是使用预先确定的查询创建规则,这使得其计算优于Piyavskii-Shubert变量。我们显示,我们的算法在时间范围内优化一美元(美元-美元-美元-Lipschitz)的连续目标时空里实现了平均遗憾(美元-美元-美元-利普施茨),我们显示这是最理想的。