We present a low-complexity and low-latency decoding algorithm for a class of Reed-Muller (RM) subcodes that are defined based on the product of smaller RM codes. More specifically, the input sequence is shaped as a multi-dimensional array, and the encoding over each dimension is done separately via a smaller RM encoder. Similarly, the decoding is performed over each dimension via a low-complexity decoder for smaller RM codes. The proposed construction is of particular interest to low-capacity channels that are relevant to emerging low-rate communication scenarios. We present an efficient soft-input soft-output (SISO) iterative decoding algorithm for the product of RM codes and demonstrate its superiority compared to hard decoding over RM code components. The proposed coding scheme has decoding (as well as encoding) complexity of $\mathcal{O}(n\log n)$ and latency of $\mathcal{O}(\log n)$ for blocklength $n$. This research renders a general framework toward efficient decoding of RM codes.
翻译:我们为一类Reed-Muller(RM)子编码提供了一种低复杂度和低长解码算法,该算法是根据较小的 RM 代码的产物来定义的。更具体地说,输入序列是一个多维阵列,每个维度的编码通过较小的 RM 编码器单独进行。同样,每个维度的解码是通过较小 RM 代码的低复杂度解码器进行。提议的构建对于与新出现的低率通信设想方案相关的低能力渠道特别感兴趣。我们为 RM 代码的产物提供了一种高效软投入软输出迭代解码算法(SISO),并展示了它相对于 RM 代码组成部分的硬解码的优越性。提议的编码方法已经解码(以及编码)$mathcal{O}(n\log n) 美元和块长度$\mathcal{O}(\log n) 美元。这一研究为高效率解码提供了一个通用框架。