Classifying the sub-categories of an object from the same super-category (e.g., bird) in a fine-grained visual classification (FGVC) task highly relies on mining multiple discriminative features. Existing approaches mainly tackle this problem by introducing attention mechanisms to locate the discriminative parts or feature encoding approaches to extract the highly parameterized features in a weakly-supervised fashion. In this work, we propose a lightweight yet effective regularization method named Channel DropBlock (CDB), in combination with two alternative correlation metrics, to address this problem. The key idea is to randomly mask out a group of correlated channels during training to destruct features from co-adaptations and thus enhance feature representations. Extensive experiments on three benchmark FGVC datasets show that CDB effectively improves the performance.


翻译:将同一超级类物体(如鸟类)的亚类分类归为精细的视觉分类(FGVC)任务,高度依赖采矿的多重歧视特征。现有办法主要通过引入注意机制来解决这一问题,即定位歧视性部件或特征编码方法,以弱小的监视方式提取高度参数特征。在这项工作中,我们提议一种轻量但有效的规范化方法,即“通道漏斗”(CDB),结合两种替代的相关度量度来解决这一问题。关键的想法是随机遮盖一组相关渠道,在训练期间从共同适应中摧毁特征,从而增强特征表现。关于三个基准的FGVC数据集的广泛实验表明CDB有效地改进了性能。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
4+阅读 · 2020年3月27日
Arxiv
7+阅读 · 2018年4月24日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员