Determining process-structure-property linkages is one of the key objectives in material science, and uncertainty quantification plays a critical role in understanding both process-structure and structure-property linkages. In this work, we seek to learn a distribution of microstructure parameters that are consistent in the sense that the forward propagation of this distribution through a crystal plasticity finite element model (CPFEM) matches a target distribution on materials properties. This stochastic inversion formulation infers a distribution of acceptable/consistent microstructures, as opposed to a deterministic solution, which expands the range of feasible designs in a probabilistic manner. To solve this stochastic inverse problem, we employ a recently developed uncertainty quantification (UQ) framework based on push-forward probability measures, which combines techniques from measure theory and Bayes rule to define a unique and numerically stable solution. This approach requires making an initial prediction using an initial guess for the distribution on model inputs and solving a stochastic forward problem. To reduce the computational burden in solving both stochastic forward and stochastic inverse problems, we combine this approach with a machine learning (ML) Bayesian regression model based on Gaussian processes and demonstrate the proposed methodology on two representative case studies in structure-property linkages.
翻译:确定过程结构-财产联系是材料科学的关键目标之一,而不确定性量化在理解过程结构与结构-财产联系方面发挥着关键作用。在这项工作中,我们力求了解微结构参数的分布,这种分布是前后一致的,因为通过晶体塑料定质元素模型(CPFEM)向前传播这种分布与材料特性的目标分布相吻合。这种随机反向配方配方配方推出可接受/一致的微结构分布,而不是确定性解决办法,这种解决办法以概率方式扩大可行设计的范围。为了解决这种反向问题,我们采用了基于推向概率计量的最近开发的不确定性定量(UQ)框架,这一框架将测量理论和贝斯规则的技术结合起来,以界定独特和数字稳定的解决办法。这一方法要求初步预测模型投入的分布,并解决先验性前向问题。为了减少在解决前向和反向性问题上扩大可行设计的范围的计算负担。为了解决前向和反向问题,我们采用了一种基于推向偏向概率测量的度计量(UQ)计量(UQ)的参数框架,我们将这一方法与一种基于衡量模型的系统分析方法结合起来。