Regularization by denoising (RED) is a widely-used framework for solving inverse problems by leveraging image denoisers as image priors. Recent work has reported the state-of-the-art performance of RED in a number of imaging applications using pre-trained deep neural nets as denoisers. Despite the recent progress, the stable convergence of RED algorithms remains an open problem. The existing RED theory only guarantees stability for convex data-fidelity terms and nonexpansive denoisers. This work addresses this issue by developing a new monotone RED (MRED) algorithm, whose convergence does not require nonexpansiveness of the deep denoising prior. Simulations on image deblurring and compressive sensing recovery from random matrices show the stability of MRED even when the traditional RED algorithm diverges.
翻译:RED(RED)是一个广泛使用的解决反向问题的框架,它利用图像缩放器作为图像的前身。最近的工作报告了RED在一些图像应用中使用预先训练过的深神经网作为储量器的最新表现。尽管最近取得了进展,但RED算法的稳定趋同仍然是一个尚未解决的问题。现有的RED理论仅保证了Civex数据不准确性条件和非扩展性缩放器的稳定。这项工作通过开发新的单体RED(MRED)算法来解决这一问题,这种算法的趋同并不要求深度稀释前程的不加速。关于随机矩阵图像除尘器和压缩感测法恢复的模拟显示即使传统的RED算法不同,RED也具有稳定性。