A reliable model order reduction process for parametric analysis in electromagnetics is detailed. Special emphasis is placed on certifying the accuracy of the reduced-order model. For this purpose, a sharp state error estimator is proposed. Standard a posteriori state error estimation for model order reduction relies on the inf-sup constant. For parametric systems, the inf-sup constant is parameter-dependent. The a posteriori error estimation for systems with very small or vanishing inf-sup constant poses a challenge, since it is inversely proportional to the inf-sup constant, resulting in rather useless, overly pessimistic error estimators. Such systems appear in electromagnetics since the inf-sup constant values are close to zero at points close to resonant frequencies, where they eventually vanish. We propose a novel a posteriori state error estimator which avoids the calculation of the inf-sup constant. The proposed state error estimator is compared with the standard error estimator and a recently proposed one in the literature. It is shown that our proposed error estimator outperforms both existing estimators. Numerical experiments are performed on real-life microwave devices such as narrowband and wideband antennas, as well as a dual-mode waveguide filter. These examples show the capabilities and efficiency of the proposed methodology.


翻译:在电磁中进行参数分析的可靠模型序列减少过程详细。 特别强调要验证降序模型的准确性。 为此, 提议了一个尖锐的状态误差估计器。 标准一个用于减少模型序列的远端国家误差估计值依赖于恒定值。 对于参数系统, 内悬定值常数取决于参数。 对于非常小的或消失的恒定值的系统, 事后误差估计是一个挑战, 因为它与上升的常数成反比, 从而导致相当无用、 过于悲观的误差估计器。 此类系统在电磁中出现, 因为内悬浮常值值在接近共振动频率的点接近零。 对于参数系统来说, 内悬常数常数常数常数常数常数的常数常数常数是取决于参数的。 我们提出的州误差估计器与标准误差估计器相比, 最近的测算器与文献中最近提出的一个测错器相比, 显示我们提议的中标的微波定值能力, 的测算器是作为现有两极级仪式的缩的模型模型, 的测算器, 的测算器, 的测算器, 的测算器, 的测算器, 的测算器的测算的演演演演演演演演演的 的 的,, 的 的 的 和的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
43+阅读 · 2022年2月19日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月12日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
43+阅读 · 2022年2月19日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员