Significant progress has been made on visual captioning, largely relying on pre-trained features and later fixed object detectors that serve as rich inputs to auto-regressive models. A key limitation of such methods, however, is that the output of the model is conditioned only on the object detector's outputs. The assumption that such outputs can represent all necessary information is unrealistic, especially when the detector is transferred across datasets. In this work, we reason about the graphical model induced by this assumption, and propose to add an auxiliary input to represent missing information such as object relationships. We specifically propose to mine attributes and relationships from the Visual Genome dataset and condition the captioning model on them. Crucially, we propose (and show to be important) the use of a multi-modal pre-trained model (CLIP) to retrieve such contextual descriptions. Further, object detector models are frozen and do not have sufficient richness to allow the captioning model to properly ground them. As a result, we propose to condition both the detector and description outputs on the image, and show qualitatively and quantitatively that this can improve grounding. We validate our method on image captioning, perform thorough analyses of each component and importance of the pre-trained multi-modal model, and demonstrate significant improvements over the current state of the art, specifically +7.5% in CIDEr and +1.3% in BLEU-4 metrics.


翻译:在视觉字幕方面已取得重大进展,主要依靠预先训练的特征和后来固定的物体探测器,这些探测器是自动递减模型的丰富投入。但是,这些方法的一个关键限制是,模型的输出仅以物体探测器的输出为条件。假设这种输出能够代表所有必要的信息是不切实际的,特别是当探测器跨数据集传输时。在这项工作中,我们解释由这一假设引出的图形模型,并提议添加一个辅助输入来代表缺少的信息,如天体关系等。我们特别提议从视觉基因组数据集中挖掘属性和关系,并设置说明说明模型的描述模式。非常关键的一点是,我们提议(并显示其重要性)使用多模式预训练模型(CLIP)来检索这种背景描述。此外,物体探测器模型被冻结,并且不够丰富,因此,我们提议在图像上设置检测和描述输出输出输出的输出结果,并且从质量和数量上显示,这可以改进地面的描述。我们提议(并显示)使用多模式模型模型(B+R)的每一项重要分析方法,我们具体地验证了BSimimal 的每一个重要模型的B级模型分析。

0
下载
关闭预览

相关内容

图像字幕(Image Captioning),是指从图像生成文本描述的过程,主要根据图像中物体和物体的动作。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
12+阅读 · 2019年4月9日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
Arxiv
15+阅读 · 2021年7月14日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
12+阅读 · 2019年4月9日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
11+阅读 · 2018年5月13日
Top
微信扫码咨询专知VIP会员