We propose the new task of K principal concept identification for dataset summarizarion. The objective is to find a set of K concepts that best explain the variation within the dataset. Concepts are high-level human interpretable terms such as "tiger", "kayaking" or "happy". The K concepts are selected from a (potentially long) input list of candidates, which we denote the concept-bank. The concept-bank may be taken from a generic dictionary or constructed by task-specific prior knowledge. An image-language embedding method (e.g. CLIP) is used to map the images and the concept-bank into a shared feature space. To select the K concepts that best explain the data, we formulate our problem as a K-uncapacitated facility location problem. An efficient optimization technique is used to scale the local search algorithm to very large concept-banks. The output of our method is a set of K principal concepts that summarize the dataset. Our approach provides a more explicit summary in comparison to selecting K representative images, which are often ambiguous. As a further application of our method, the K principal concepts can be used to classify the dataset into K groups. Extensive experiments demonstrate the efficacy of our approach.
翻译:我们建议 K 的主要概念识别 用于 数据集 summarizariion 的新任务 。 目标是找到一组 K 概念 概念 概念, 以 更好地 解释数据集内的差异 。 概念 是 高层次的人类可解释的术语, 如“ tiger ”、“ kayaking ” 或“ hapy ” 。 K 概念是从一个( 可能长的) 候选人输入列表中选择的 。 我们表示概念库。 概念库可以取自一个通用字典, 或者由特定任务之前的知识来构建 。 图像嵌入方法( 如 CLIP) 用于将图像和概念库映射成一个共享的特性空间 。 要选择最能解释数据的 K 概念, 我们将问题发展成 K 功能定位为 K 功能定位问题 。 高效的优化技术用于将本地搜索算法推广到非常大的概念库 。 我们方法的输出是一组 K 主要概念, 总结数据集 。 我们的方法提供了比较 K 比较 K 的更清晰的概要, 。 作为我们方法的进一步应用, K 主要概念可以 向 K 将数据分类 。