Influence maximization is a crucial issue for mining the deep information of social networks, which aims to select a seed set from the network to maximize the number of influenced nodes. To evaluate the influence spread of a seed set efficiently, existing studies have proposed transformations with lower computational costs to replace the expensive Monte Carlo simulation process. These alternate transformations, based on network prior knowledge, induce different search behaviors with similar characteristics to various perspectives. Specifically, it is difficult for users to determine a suitable transformation a priori. This article proposes a multi-transformation evolutionary framework for influence maximization (MTEFIM) with convergence guarantees to exploit the potential similarities and unique advantages of alternate transformations and to avoid users manually determining the most suitable one. In MTEFIM, multiple transformations are optimized simultaneously as multiple tasks. Each transformation is assigned an evolutionary solver. Three major components of MTEFIM are conducted via: 1) estimating the potential relationship across transformations based on the degree of overlap across individuals of different populations, 2) transferring individuals across populations adaptively according to the inter-transformation relationship, and 3) selecting the final output seed set containing all the transformation's knowledge. The effectiveness of MTEFIM is validated on both benchmarks and real-world social networks. The experimental results show that MTEFIM can efficiently utilize the potentially transferable knowledge across multiple transformations to achieve highly competitive performance compared to several popular IM-specific methods. The implementation of MTEFIM can be accessed at https://github.com/xiaofangxd/MTEFIM.


翻译:影响最大化是挖掘社会网络深层信息的一个关键问题,社会网络旨在从网络中选择一组种子,以最大限度地增加受影响节点的数量。为了高效地评估种子集的影响扩散,现有研究提议以较低的计算成本进行转换,以取代昂贵的蒙特卡洛模拟过程。基于网络先前的知识,这些替代转型导致具有与各种观点相似特点的不同搜索行为。具体地说,用户难以确定一个适当的先验转变。本文章提议了一个影响最大化的多变进化框架(MTEFIM),以综合保证利用替代转型的潜在相似性和独特优势,并避免用户手工确定最合适的组合。在MTEFIM中,多重转型同时优化为多重任务。每项转型都指定了一个演进解决方案。MTEFIM的三个主要组成部分是:1)根据不同人群的重叠程度来估计各种转型的潜在关系;2)根据跨人口之间的互换关系,将个人从适应性转移至不同群体之间;3)选择包含所有变换的相似性和独特优势,并避免用户手工决定其中最合适的优势。MTFMF的效益是全球可变现性成果网络。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员