In STOC'95 [ADMSS95] Arya et al. showed that any set of $n$ points in $\mathbb R^d$ admits a $(1+\epsilon)$-spanner with hop-diameter at most 2 (respectively, 3) and $O(n \log n)$ edges (resp., $O(n \log \log n)$ edges). They also gave a general upper bound tradeoff of hop-diameter at most $k$ and $O(n \alpha_k(n))$ edges, for any $k \ge 2$. The function $\alpha_k$ is the inverse of a certain Ackermann-style function at the $\lfloor k/2 \rfloor$th level of the primitive recursive hierarchy, where $\alpha_0(n) = \lceil n/2 \rceil, \alpha_1(n) = \left\lceil \sqrt{n} \right\rceil, \alpha_2(n) = \lceil \log{n} \rceil, \alpha_3(n) = \lceil \log\log{n} \rceil, \alpha_4(n) = \log^* n, \alpha_5(n) = \lfloor \frac{1}{2} \log^*n \rfloor$, \ldots. Roughly speaking, for $k \ge 2$ the function $\alpha_{k}$ is close to $\lfloor \frac{k-2}{2} \rfloor$-iterated log-star function, i.e., $\log$ with $\lfloor \frac{k-2}{2} \rfloor$ stars. Whether or not this tradeoff is tight has remained open, even for the cases $k = 2$ and $k = 3$. Two lower bounds are known: The first applies only to spanners with stretch 1 and the second is sub-optimal and applies only to sufficiently large (constant) values of $k$. In this paper we prove a tight lower bound for any constant $k$: For any fixed $\epsilon > 0$, any $(1+\epsilon)$-spanner for the uniform line metric with hop-diameter at most $k$ must have at least $\Omega(n \alpha_k(n))$ edges.
翻译:在 STOC'95 [ADMSS95] Arya 和 Al. 中显示, 任何一组美元值在 $\ mathbb R'd$ 2 (1\\ epsilon) 和 $O(n\log n) 邊緣( resp., $(n)\log\log n) 中, 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面,平面平面平面平面平面平面平面平面平面平面,平面平面平面平面,平面平面平面平面,平面平面平面平面平面平面平面,平面平面平面,平面平面,平面平面平面,平面平面,平面平面平面平面平面,平面,平面,平面,平面平面平面,平面,平面平面平面,平面,平面平面平面平面,平面平面平面平面,平面,平面平面,平面,平面,平面,平面,平面,平面平面平面平面,平面,平面平面,平面,平面平面平面,平面,平面平面平面平面平面平面,平面,平面平面,平面平面平面平面,平面,平面平面平面平面平面平面,平面,平面平面平面平面平面,平面,平面