Let $\mathbb{Z}_n = \{Z_1, \ldots, Z_n\}$ be a design; that is, a collection of $n$ points $Z_j \in [-1,1]^d$. We study the quality of quantization of $[-1,1]^d$ by the points of $\mathbb{Z}_n$ and the problem of quality of coverage of $[-1,1]^d$ by ${\cal B}_d(\mathbb{Z}_n,r)$, the union of balls centred at $Z_j \in \mathbb{Z}_n$. We concentrate on the cases where the dimension $d$ is not small ($d\geq 5$) and $n$ is not too large, $n \leq 2^d$. We define the design ${\mathbb{D}_{n,\delta}}$ as a $2^{d-1}$ design defined on vertices of the cube $[-\delta,\delta]^d$, $0\leq \delta\leq 1$. For this design, we derive a closed-form expression for the quantization error and very accurate approximations for {the coverage area} vol$([-1,1]^d \cap {\cal B}_d(\mathbb{Z}_n,r))$. We provide results of a large-scale numerical investigation confirming the accuracy of the developed approximations and the efficiency of the designs ${\mathbb{D}_{n,\delta}}$.
翻译:让我们来研究$[1,1,1,1,1美元] 的量化质量, 以及$[1,1,1,1美元] 的覆盖质量问题。 球的组合以 $j\in\ mathb@n美元为核心; 也就是说, 我们集中研究美元规模不小(dgeq 5美元)和美元并不大($1,1,1美元)的案件。 我们定义了$(mathbb ⁇ n) 的量化质量质量问题, $1, 1,1,1美元(d) 美元覆盖质量问题, 美元B*d(mathbb ⁇ n,r) 美元, 球球的组合以 $j\in\ =mathb% 美元为核心。 我们集中研究美元规模(dgeq 5美元) 和 $nnnnn美元 的量化质量问题。 我们定义了 $\db*d+1 的计算结果。