Neurons in the brain are often finely tuned for specific task variables. Moreover, such disentangled representations are highly sought after in machine learning. Here we mathematically prove that simple biological constraints on neurons, namely nonnegativity and energy efficiency in both activity and weights, promote such sought after disentangled representations by enforcing neurons to become selective for single factors of task variation. We demonstrate these constraints lead to disentanglement in a variety of tasks and architectures, including variational autoencoders. We also use this theory to explain why the brain partitions its cells into distinct cell types such as grid and object-vector cells, and also explain when the brain instead entangles representations in response to entangled task factors. Overall, this work provides a mathematical understanding of why single neurons in the brain often represent single human-interpretable factors, and steps towards an understanding task structure shapes the structure of brain representation.
翻译:----
带有生物约束的解缠绑:功能细胞类型的理论
翻译摘要:
在大脑中,神经元常常对特定的任务变量进行细微调整。此外,这种解缠绑的表示在机器学习中非常受欢迎。在此,我们从数学上证明了神经元上的简单生物约束,即在活动和权重方面均为非负和能源有效,通过强制神经元对任务变异的单个因素变得更具选择性,从而促进了这种寻求的解缠绑表示。我们证明这些约束在各种任务和体系结构(包括变分自动编码器)中导致解缠绑。我们还使用此理论来解释为什么大脑将其细胞分割为不同的细胞类型,比如网格和对象矢量细胞,并解释了大脑何时将表示纠缠在一起以响应纠缠的任务因素。总的来说,这项工作提供了为什么大脑中的单个神经元通常代表单个人类可解释因素的数学理解,并为解释任务结构如何形成大脑表示的结构迈出了一步。