In this work, we address the inverse kinetics problem of motion planning of soft biomimetic actuators driven by three chambers. Soft biomimetic actuators have been applied in many applications owing to their intrinsic softness. Although a mathematical model can be derived to describe the inverse dynamics of this actuator, it is still not accurate to capture the nonlinearity and uncertainty of the material and the system. Besides, such a complex model is time-consuming, so it is not easy to apply in the real-time control unit. Therefore, developing a model-free approach in this area could be a new idea. To overcome these intrinsic problems, we propose a back-propagation (BP) neural network learning the inverse kinetics of the soft biomimetic actuator moving in three-dimensional space. After training with sample data, the BP neural network model can represent the relation between the manipulator tip position and the pressure applied to the chambers. The proposed algorithm is more precise than the analytical model. The results show that a desired terminal position can be achieved with a degree of accuracy of 2.46% relative average error with respect to the total actuator length.
翻译:在这项工作中,我们解决了由三个室驱动的软生物模拟动动器运动规划反动动的问题。 软生物模拟动动器由于内在软性, 在许多应用中应用了软生物模拟动动器。 虽然可以用数学模型来描述这个动动动器的反动动态, 但是仍然不能准确地捕捉材料和系统的非线性和不确定性。 此外, 这种复杂的模型耗时甚多, 因此在实时控制器中应用起来并不容易。 因此, 在该地区开发一个无模型的方法可能是一个新想法。 为了克服这些内在问题, 我们提议了一种反向推进( BP) 神经网络, 学习在三维空间移动的软生物模拟动动画器的反动动能。 在对样本数据进行培训后, BP 神经网络模型可以代表操纵器顶部位置和对室施压之间的关系。 提议的算法比分析模型更精确。 结果显示, 理想的终端位置可以达到2.46 %的准确度, 相对平均误差与动作器总长度相等。