Recently, developing an automatic reading system for analog measuring instruments has gained increased attention, as it enables the collection of numerous state of equipment. Nonetheless, two major obstacles still obstruct its deployment to real-world applications. The first issue is that they rarely take the entire pipeline's speed into account. The second is that they are incapable of dealing with some low-quality images (i.e., meter breakage, blur, and uneven scale). In this paper, we propose a human-like alignment and recognition algorithm to overcome these problems. More specifically, a Spatial Transformed Module(STM) is proposed to obtain the front view of images in a self-autonomous way based on an improved Spatial Transformer Networks(STN). Meanwhile, a Value Acquisition Module(VAM) is proposed to infer accurate meter values by an end-to-end trained framework. In contrast to previous research, our model aligns and recognizes meters totally implemented by learnable processing, which mimics human's behaviours and thus achieves higher performances. Extensive results verify the good robustness of the proposed model in terms of the accuracy and efficiency.


翻译:最近,开发模拟测量仪器的自动读数系统引起了越来越多的关注,因为它能够收集大量设备,然而,两大障碍仍然阻碍着将它用于现实世界应用,第一个问题是它们很少考虑整个输油管的速度,第二个问题是它们无法处理一些低质量图像(即,米破碎、模糊和比例不均)。在本文件中,我们提出了一种人性化的校正和识别算法,以克服这些问题。更具体地说,提出了空间变换模块(STM),以便在改进的空间变换器网络(STN)的基础上,以自主的方式获取图像的正面视图。与此同时,还提议了一个价值购置模块,通过一个经过培训的端对端框架,推断准确的计量值。与以往的研究相比,我们的模型对米进行了调整,并承认了通过学习处理而完全执行的仪表,这种处理模拟了人类的行为,从而实现了更高的性能。广泛的结果验证了拟议模型在准确性和效率方面是否稳健。</s>

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
A Comprehensive Survey on Transfer Learning
Arxiv
120+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员