Image resolution is an important criterion for many applications based on satellite imagery. In this work, we adapt a state-of-the-art kernel regression technique for smartphone camera burst super-resolution to satellites. This technique leverages the local structure of the image to optimally steer the fusion kernels, limiting blur in the final high-resolution prediction, denoising the image, and recovering details up to a zoom factor of 2. We extend this approach to the multi-exposure case to predict from a sequence of multi-exposure low-resolution frames a high-resolution and noise-free one. Experiments on both single and multi-exposure scenarios show the merits of the approach. Since the fusion is learning-free, the proposed method is ensured to not hallucinate details, which is crucial for many remote sensing applications.
翻译:图像分辨率是基于卫星图像的许多应用的一个重要标准。 在这项工作中,我们调整了智能手机相机爆破超分辨率卫星的最先进的内核回归技术。 这种技术利用图像的本地结构优化地引导聚变内核,限制最后高分辨率预测的模糊性,将图像脱色,并恢复细节到2的缩放因子。 我们将这一方法扩大到多接触情况,以便从多接触低分辨率框架的序列中预测高分辨率和无噪音框架。 单一和多接触情景的实验显示了该方法的优点。 由于聚变是没有学习的,因此建议的方法不会产生幻觉细节,这对许多遥感应用至关重要。</s>