Logo retrieval is a challenging problem since the definition of similarity is more subjective compared to image retrieval tasks and the set of known similarities is very scarce. To tackle this challenge, in this paper, we propose a simple but effective segment-based augmentation strategy to introduce artificially similar logos for training deep networks for logo retrieval. In this novel augmentation strategy, we first find segments in a logo and apply transformations such as rotation, scaling, and color change, on the segments, unlike the conventional image-level augmentation strategies. Moreover, we evaluate whether the recently introduced ranking-based loss function, Smooth-AP, is a better approach for learning similarity for logo retrieval. On the large scale METU Trademark Dataset, we show that (i) our segment-based augmentation strategy improves retrieval performance compared to the baseline model or image-level augmentation strategies, and (ii) Smooth-AP indeed performs better than conventional losses for logo retrieval.
翻译:登录检索是一个具有挑战性的问题,因为与图像检索任务相比,相似性的定义比较主观,而已知的相似性也非常少。为了应对这一挑战,我们在本文件中提议了一个简单而有效的基于部分的增强战略,以人为地引入类似的标志来培训深层网络进行标识检索。在这个新型增强战略中,我们首先在部分上找到一个标志中的部分,并在部分上应用轮用、缩放和颜色变化等转换,这与传统的图像级增强战略不同。此外,我们评估最近引入的基于排名的损失函数“滑动-AP”是否是学习标识检索相似性的更好方法。在大型的METU Trademark数据集中,我们显示(一)基于部分的增强战略比基线模型或图像级增强战略提高了检索的绩效,以及(二)光-AP在标识检索方面确实比常规损失要好。