Pairing a lexical retriever with a neural re-ranking model has set state-of-the-art performance on large-scale information retrieval datasets. This pipeline covers scenarios like question answering or navigational queries, however, for information-seeking scenarios, users often provide information on whether a document is relevant to their query in form of clicks or explicit feedback. Therefore, in this work, we explore how relevance feedback can be directly integrated into neural re-ranking models by adopting few-shot and parameter-efficient learning techniques. Specifically, we introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant. Further, we explore Cross-Encoder models that we pre-train using meta-learning and subsequently fine-tune for each query, training only on the feedback documents. To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario. Extensive experiments demonstrate that integrating relevance feedback directly in neural re-ranking models improves their performance, and fusing lexical ranking with our best performing neural re-ranker outperforms all other methods by 5.2 nDCG@20.
翻译:使用神经再排序模型对词汇检索器进行对称,在大型信息检索数据集上设定了最先进的性能。这个管道覆盖了问题回答或导航查询等情景,然而,对于信息搜索情景,用户往往以点击或明确反馈的形式提供信息,说明文件是否与其查询相关。因此,在这项工作中,我们探索如何通过采用微小和具有参数效率的学习技术,将相关反馈直接纳入神经再排序模型中。具体地说,我们引入了基于文件与用户认为相关的查询和文件相似性重新排序的 kNN 方法。此外,我们探索了跨编码模型,即我们使用元学习进行预培训,随后对每个查询进行微调,仅对反馈文件进行培训。为了评估我们不同的整合战略,我们将四个现有的信息检索数据集转化为相关反馈方案。广泛的实验表明,将相关反馈直接纳入神经再排序模型可以提高它们的性能,并且将词汇排序与我们最佳的神经再排序相比,将所有其他方法都用于 5.DG20的计算方法。