We introduce the theoretical study of a Platform Equilibrium in a market with unit-demand buyers and unit-supply sellers. Each seller can join a platform and transact with any buyer or remain off-platform and transact with a subset of buyers whom she knows. Given the constraints on trade, prices form a competitive equilibrium and clears the market. The platform charges a transaction fee to all on-platform sellers, in the form of a fraction of on-platform sellers' price. The platform chooses the fraction to maximize revenue. A Platform Equilibrium is a Nash equilibrium of the game where each seller decides whether or not to join the platform, balancing the effect of a larger pool of buyers to trade with, against the imposition of a transaction fee. Our main insights are: (i) In homogeneous-goods markets, pure equilibria always exist and can be found by a polynomial-time algorithm; (ii) When the platform is unregulated, the resulting Platform Equilibrium guarantees a tight $\Theta(log(min(m, n)))$-approximation of the optimal welfare in homogeneous-goods markets, where $n$ and $m$ are the number of buyers and sellers respectively; (iii) Even light regulation helps: when the platform's fee is capped at $\alpha\in[0,1)$, the price of anarchy is 2-$\alpha$/1-$\alpha$ for general markets. For example, if the platform takes 30 percent of the seller's revenue, a rather high fee, our analysis implies the welfare in a Platform Equilibrium is still a 0.412-fraction of the optimal welfare. Our main results extend to markets with multiple platforms, beyond unit-demand buyers, as well as to sellers with production costs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
Arxiv
17+阅读 · 2021年7月18日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
17+阅读 · 2023年12月4日
Arxiv
17+阅读 · 2021年7月18日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员