Fast and accurate path planning is important for ground robots to achieve safe and efficient autonomous navigation in unstructured outdoor environments. However, most existing methods exploiting either 2D or 2.5D maps struggle to balance the efficiency and safety for ground robots navigating in such challenging scenarios. In this paper, we propose a novel hybrid map representation by fusing a 2D grid and a 2.5D digital elevation map. Based on it, a novel path planning method is proposed, which considers the robot poses during traversability estimation. By doing so, our method explicitly takes safety as a planning constraint enabling robots to navigate unstructured environments smoothly.The proposed approach has been evaluated on both simulated datasets and a real robot platform. The experimental results demonstrate the efficiency and effectiveness of the proposed method. Compared to state-of-the-art baseline methods, the proposed approach consistently generates safer and easier paths for the robot in different unstructured outdoor environments. The implementation of our method is publicly available at https://github.com/nubot-nudt/T-Hybrid-planner.
翻译:快速和准确的路径规划对于地面机器人在无结构户外环境中实现安全、高效自主导航十分重要。然而,大多数利用现有2D或2.5D地图的方法都试图平衡在如此富有挑战性的情况下航行的地面机器人的效率和安全。在本文件中,我们建议采用新型混合地图代表法,方法是用2D网格和2.5D数字高地地图引信。在此基础上,提出了新的路径规划法,其中考虑到机器人在可移动性估计期间的构成。通过这样做,我们的方法明确将安全作为规划方面的制约因素,使机器人能够顺利地导航无结构的环境。在模拟数据集和真正的机器人平台上都对拟议方法进行了评估。实验结果显示了拟议方法的效率和有效性。与最新基线方法相比,拟议方法始终为不同结构化室外环境中的机器人创造更安全、更便捷的道路。我们在https://github.com/nubot-nudt/T-Hybrid-planner上公开介绍了我们的方法的实施情况。</s>