Narrative generation is an open-ended NLP task in which a model generates a story given a prompt. The task is similar to neural response generation for chatbots; however, innovations in response generation are often not applied to narrative generation, despite the similarity between these tasks. We aim to bridge this gap by applying and evaluating advances in decoding methods for neural response generation to neural narrative generation. In particular, we employ GPT-2 and perform ablations across nucleus sampling thresholds and diverse decoding hyperparameters -- specifically, maximum mutual information -- analyzing results over multiple criteria with automatic and human evaluation. We find that (1) nucleus sampling is generally best with thresholds between 0.7 and 0.9; (2) a maximum mutual information objective can improve the quality of generated stories; and (3) established automatic metrics do not correlate well with human judgments of narrative quality on any qualitative metric.


翻译:叙述性生成是一个开放式的NLP任务,模型在其中生成一个故事,这种任务与对聊天室的神经反应生成相似;然而,尽管这些任务相似,反应性生成的创新往往不适用于叙述性生成;我们的目标是通过应用和评估神经反应生成神经叙述生成解码方法的进展来弥合这一差距;特别是,我们采用GPT-2,并跨越核心取样阈值和多种解码超标 -- -- 特别是最大程度的相互信息 -- -- 来分析通过自动和人文评估的多重标准得出的结果;我们发现:(1) 核心取样通常最符合0.7和0.9之间的阈值;(2) 最大程度的相互信息目标可以提高生成故事的质量;(3) 既定自动指标与人类对任何定性指标的描述质量判断不相适应。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Coordinate Descent Methods for DC Minimization
Arxiv
0+阅读 · 2021年9月9日
Arxiv
0+阅读 · 2021年9月7日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
5+阅读 · 2019年4月21日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
3+阅读 · 2018年3月14日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关论文
Coordinate Descent Methods for DC Minimization
Arxiv
0+阅读 · 2021年9月9日
Arxiv
0+阅读 · 2021年9月7日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
5+阅读 · 2019年4月21日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
3+阅读 · 2018年3月14日
Arxiv
5+阅读 · 2017年11月30日
Top
微信扫码咨询专知VIP会员