We consider state and parameter estimation for a dynamical system having both time-varying and time-invariant parameters. It has been shown that the robustness of the Markov Chain Monte Carlo (MCMC) algorithm for estimating time-invariant parameters alongside nonlinear filters for state estimation provided more reliable estimates than the estimates obtained solely using nonlinear filters for combined state and parameter estimation. In a similar fashion, we adopt the extended Kalman filter (EKF) for state estimation and the estimation of the time-varying system parameters, but reserve the task of estimating time-invariant parameters to the MCMC algorithm. In a standard method, we augment the state vector to include the original states of the system and the subset of the parameters that are time-varying. Each time-varying parameter is perturbed by a white noise process, and we treat the strength of this artificial noise as an additional time-invariant parameter to be estimated by MCMC, circumventing the need for manual tuning. Conventionally, both time-varying and time-invariant parameters are appended in the state vector, and thus for the purpose of estimation, both are free to vary in time. However, allowing time-invariant system parameters to vary in time introduces artificial dynamics into the system, which we avoid by treating these time-invariant parameters as static and estimating them using MCMC. Furthermore, by estimating the time-invariant parameters by MCMC, the augmented state is smaller and the nonlinearity in the ensuing state space model will tend to be weaker than in the conventional approach. We illustrate the above-described approach for a simple dynamical system in which some model parameters are time-varying, while the remaining parameters are time-invariant.
翻译:我们考虑对具有时间变异性和时间变异性参数的动态系统进行状态和参数估计。 已经表明,Markov 链条蒙特- 蒙特卡洛(MCMC)算法对于估算时间变异参数的稳健性与非线性过滤器对于国家估算的稳健性与非线性过滤器相比,提供了比仅使用非线性过滤器得出的估计数更可靠的估计数,用于合并状态和参数估计。 同样,我们采用了扩展的卡尔曼过滤器(EKF),用于州估测和时间变异系统参数的估测,但将估算时间变异性参数的任务留给MC的算法。在标准方法中,我们扩大的状态矢量将系统原始状态变异性参数和时间变异性参数纳入时间变量中。 每种时间变异参数都被白色噪音过程所渗透,我们把这种人为噪音的强度作为由MC模型估计的额外时间变异性参数,从而绕过手调整的需要。 常规变异性和时间参数都将时间变变变的参数都附在状态矢测算系统上, 而对于时间变变变变变变变的系统, 则在不断变变变的系统里, 变变变的系统是时间, 变变变的变的系统,, 变变变的系统在这些变变的变的变的变的变的系统在变变变变变变的变的变的变的变的变的变的变的系统,, 变的变的变的变的变的系统在时间在时间,, 变 变的变变变的变的变的变的变的变的变的变的变的变变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变,,,,在时间在时间在时间在时间在时间在变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变