A new data-based smoothing parameter for circular kernel density (and its derivatives) estimation is proposed. Following the plug-in ideas, unknown quantities on an optimal smoothing parameter are replaced by suitable estimates. This paper provides a circular version of the well-known Sheather and Jones bandwidths (DOI: 10.1111/j.2517-6161.1991.tb01857.x), with direct and solve-the-equation plug-in rules. Theoretical support for our developments, related to the asymptotic mean squared error of the estimator of the density, its derivatives, and its functionals, for circular data, are provided. The proposed selectors are compared with previous data-based smoothing parameters for circular kernel density estimation. This paper also contributes to the study of the optimal kernel for circular data. An illustration of the proposed plug-in rules is also shown using real data on the time of car accidents.
翻译:提议为循环内核密度(及其衍生物)估计提出一个新的基于数据的平滑参数。在插件想法之后,最佳平滑参数的未知数量被适当估计数取代。本文提供了众所周知的剪切机和琼斯带宽(DOI: 10.1111/j.2517-6161.1991.tb01857.x)的循环版本(DOI: 10.111/j.2517-61.61.1991.tb01857.x),并附有直接和解析平方格插件规则。在理论上支持我们的发展,涉及循环数据中密度、其衍生物及其功能的估测器的无症状平均正方形错误。拟议的选择器与先前基于数据的圆内核密度估计的平滑参数进行了比较。本文还有助于对循环数据的最佳内核进行研究。还利用汽车事故时间的实际数据展示了拟议的插件规则。