In [Math. Oper. Res., 2011], Fleischer et al. introduced a powerful technique for solving the generic class of separable assignment problems (SAP), in which a set of items of given values and weights needs to be packed into a set of bins subject to separable assignment constraints, so as to maximize the total value. The approach of Fleischer at al. relies on solving a configuration LP and sampling a configuration for each bin independently based on the LP solution. While there is a SAP variant for which this approach yields the best possible approximation ratio, for various special cases, there are discrepancies between the approximation ratios obtained using the above approach and the state-of-the-art approximations. This raises the following natural question: Can we do better by iteratively solving the configuration LP and sampling a few bins at a time? To assess the potential gain from iterative randomized rounding, we consider as a case study one interesting SAP variant, namely, Uniform Cardinality Constrained Multiple Knapsack, for which we answer this question affirmatively. The input is a set of items, each has a value and a weight, and a set of uniform capacity bins. The goal is to assign a subset of the items of maximum total value to the bins such that $(i)$ the capacity of any bin is not exceeded, and $(ii)$ the number of items assigned to each bin satisfies a given cardinality constraint. While the technique of Fleischer et al. yields a $\left(1-\frac{1}{e}\right)$-approximation for the problem, we show that iterative randomized rounding leads to an efficient polynomial time approximation scheme (EPTAS), thus essentially resolving the complexity status of the problem. Our analysis of iterative randomized rounding can be useful for solving other SAP variants.
翻译:暂无翻译