Over three decades of scientific endeavors to realize programmable matter, a substance that can change its physical properties based on user input or responses to its environment, there have been many advances in both the engineering of modular robotic systems and the corresponding algorithmic theory of collective behavior. However, while the design of modular robots routinely addresses the challenges of realistic three-dimensional (3D) space, algorithmic theory remains largely focused on 2D abstractions such as planes and planar graphs. In this work, we formalize the 3D geometric space variant for the canonical amoebot model of programmable matter, using the face-centered cubic (FCC) lattice to represent space and define local spatial orientations. We then give a distributed algorithm for leader election in connected, contractible 2D or 3D geometric amoebot systems that deterministically elects exactly one leader in $\mathcal{O}(n)$ rounds under an unfair sequential adversary, where $n$ is the number of amoebots in the system. We then demonstrate how this algorithm can be transformed using the concurrency control framework for amoebot algorithms (DISC 2021) to obtain the first known amoebot algorithm, both in 2D and 3D space, to solve leader election under an unfair asynchronous adversary.
翻译:30多年来,为实现可编程物质这一可以根据用户投入或环境反应改变其物理特性的可编程物质,在模块机器人系统的工程工程和相应的集体行为算法理论方面都取得了许多进展。然而,虽然模块机器人的设计通常解决现实的三维(3D)空间的挑战,但算法理论仍然主要侧重于2D抽象学,如飞机和平面图。在这项工作中,我们正式确定了3D可编程物质的卡通亚米博模型的3D几何空间变量,利用面向中立方(FCC)拉蒂来代表空间和界定当地空间方向。我们随后为相关连线的2D或3D地理偏差的领先选举提供了分布式算法,这些系统在 $\ mathcal{O} (n) 中精确选出一位领导人。 在不公平的顺序对等反射线下, 美元是系统中的阿莫博博博博博模型的数量。 我们随后展示了该算法是如何使用首个配置货币控制框架转换成一个已知的Amooot-D 3commatologue oral commalogisal orationalationalationalationalbalevalation (Dalation) 2021, 在已知的Amobolationalborgalbolationalationalgalgalgalgalgalbus (D) labisalbalbalgalbalbus 2040获得一个已知的Amationalgalgalgalgalgalgalgalgalgalgalgalgalboration 和Amation(D) 2021获得一个已知的Am) oration oration。