This paper is concerned with games of infinite duration played over potentially infinite graphs. Recently, Ohlmann (LICS 2022) presented a characterisation of objectives admitting optimal positional strategies, by means of universal graphs: an objective is positional if and only if it admits well-ordered monotone universal graphs. We extend Ohlmann's characterisation to encompass (finite or infinite) memory upper bounds. We prove that objectives admitting optimal strategies with $\varepsilon$-memory less than $m$ (a memory that cannot be updated when reading an $\varepsilon$-edge) are exactly those which admit well-founded monotone universal graphs whose antichains have size bounded by $m$. We also give a characterisation of chromatic memory by means of appropriate universal structures. Our results apply to finite as well as infinite memory bounds (for instance, to objectives with finite but unbounded memory, or with countable memory strategies). We illustrate the applicability of our framework by carrying out a few case studies, we provide examples witnessing limitations of our approach, and we discuss general closure properties which follow from our results.
翻译:本文涉及无限持续时间的游戏,这些游戏在潜在无限的图形上播放。 最近, Ohlmann (LICS 2022) 通过通用图形展示了接受最佳定位战略的目标的特征:一个目标只有在接受有序的单质通用图形时才具有位置性。 我们将Ohlmann的特征扩展至包含(无限或无限)内存的上限。 我们证明, 目标允许采用以价值小于百万美圆的最佳战略( 读取美元时无法更新的记忆), 正是那些接受有根有基的单质通用图形,其抗链大小受美元约束的目标。 我们还通过适当的通用结构来给染色体内存定性特征。 我们的结果既适用于有限,也适用于无限的内存界限( 例如,有有限但无约束的内存目标,或可计算记忆战略 ) 。 我们通过开展少数案例研究来说明我们的框架的适用性, 我们举例说明了我们方法的局限性,我们讨论从结果中得出的一般封闭性。