Multi-item revenue-optimal mechanisms are known to be extremely complex, often offering buyers randomized lotteries of goods. In the standard buy-one model, it is known that optimal mechanisms can yield revenue infinitely higher than that of any "simple" mechanism -- the ones with size polynomial in the number of items -- even with just two items and a single buyer (Briest et al. 2015, Hart and Nisan 2017). We introduce a new parameterized class of mechanisms, buy-$k$ mechanisms, which smoothly interpolate between the classical buy-one mechanisms and the recently studied buy-many mechanisms (Chawla et al. 2019, Chawla et al. 2020, Chawla et al. 2022). Buy-$k$ mechanisms allow the buyer to buy up to $k$ many menu options. We show that restricting the seller to the class of buy-$n$ incentive-compatible mechanisms suffices to overcome the bizarre, infinite revenue properties of the buy-one model. Our main result is that the revenue gap with respect to bundling, an extremely simple mechanism, is bounded by $O(n^2)$ for any arbitrarily correlated distribution $\mathcal{D}$ over $n$ items for the case of an additive buyer. Our techniques also allow us to prove similar upper bounds for arbitrary monotone valuations, albeit with an exponential factor in the approximation. On the negative side, we show that allowing the buyer to purchase a small number of menu options does not suffice to guarantee sub-exponential approximations, even when we weaken the benchmark to the optimal buy-$k$ deterministic mechanism. If an additive buyer is only allowed to buy $k = \Theta(n^{1/2-\varepsilon})$ many menu options, the gap between the revenue-optimal deterministic buy-$k$ mechanism and bundling may be exponential in $n$. In particular, this implies that no "simple" mechanism can obtain a sub-exponential approximation in this regime.


翻译:多项目收入-最佳机制众所周知非常复杂,通常为购买者提供任意的商品批发。在标准一价模式中,已知最佳机制可以产生远高于任何“简单”机制的收入 -- -- 即物品数量具有多元性的机制 -- -- 即使只有两个项目和一个买方(Briest等人,2015年,哈特和尼桑,2017年)。我们引入一个新的参数化机制类别,买入-一元机制,这种机制在经典的一价机制与最近研究的购买-多金机制(Chawla等人,2019年,Chawla等人,2020年,Chawla等人,2022年)之间顺利互通。买-一价机制允许购买-一价机制,而购买-一价机制则允许购买-一价机制的离奇、无限收入特性。我们购买-一价机制的一个特别简单的机制(Chowal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-rum-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-al-al-al-al-al-al-al-l-l-l-l-l)机制之间收入机制, 2020202019, 等机制。买入-al-l-l-l-l-l-l-al-al-al-al-l-al-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月22日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员