Results from randomized controlled trials (RCTs) help determine vaccination strategies and related public health policies. However, defining and identifying estimands that can guide policies in infectious disease settings is difficult, even in an RCT. The effects of vaccination critically depend on characteristics of the population of interest, such as the prevalence of infection, the number of vaccinated, and social behaviors. To mitigate the dependence on such characteristics, estimands, and study designs, that require conditioning or intervening on exposure to the infectious agent have been advocated. But a fundamental problem for both RCTs and observational studies is that exposure status is often unavailable or difficult to measure, which has made it impossible to apply existing methodology to study vaccine effects that account for exposure status. In this work, we present new results on this type of vaccine effects. Under plausible conditions, we show that point identification of certain relative effects is possible even when the exposure status is unknown. Furthermore, we derive sharp bounds on the corresponding absolute effects. We apply these results to estimate the effects of the ChAdOx1 nCoV-19 vaccine on SARS-CoV-2 disease (COVID-19) conditional on post-vaccine exposure to the virus, using data from a large RCT.
翻译:随机控制试验的结果有助于确定疫苗接种战略和相关的公共卫生政策。然而,确定和确定能够指导传染病环境中的政策的估算值是困难的,即使在RCT中也是如此。疫苗接种的效果关键取决于受关注人群的特点,例如感染的流行程度、接种疫苗的数量和社会行为。为了减轻对需要调控或干预接触传染性制剂的特征、估计值和研究设计的依赖,人们主张了这些特征、估计值和研究设计。但是,RCT和观察研究的一个根本问题是,接触状况往往无法或难以衡量,这使得无法运用现有方法研究疫苗对暴露状况的影响。在这项工作中,我们提出了关于这种疫苗影响的新结果。在可能的条件下,我们表明即使接触状况不明,也有可能确定某些相对影响。此外,我们从相应的绝对影响中得出了尖锐的界限。我们运用这些结果来估计CAdOx1 nCOV-19疫苗对SA-COV-2疾病(COVI-19)的影响,从而无法应用现有方法来研究疫苗对疫苗的影响,并据此研究其接触状况。我们提出了关于这种疫苗影响的新的结果。在可能时,即使接触状态不明的情况下,使用大规模接触后病毒的数据。