One-bit compressed sensing (1bCS) is an extreme-quantized signal acquisition method that has been intermittently studied in the past decade. In 1bCS, linear samples of a high dimensional signal are quantized to only one bit per sample (sign of the measurement). The extreme quantization makes it an interesting case study of the more general single-index or generalized linear models. At the same time it can also be thought of as a `design' version of learning a binary linear classifier or halfspace-learning. Assuming the original signal vector to be sparse, existing results in 1bCS either aim to find the support of the vector, or approximate the signal within an $\epsilon$-ball. The focus of this paper is support recovery, which often also computationally facilitate approximate signal recovery. A \emph{universal} measurement matrix for 1bCS refers to one set of measurements that work \emph{for all} sparse signals. With universality, it is known that $\tilde{\Theta}(k^2)$ 1bCS measurements are necessary and sufficient for support recovery (where $k$ denotes the sparsity). In this work, we show that it is possible to universally recover the support with a small number of false positives with $\tilde{O}(k^{3/2})$ measurements. If the dynamic range of the signal vector is known, then with a different technique, this result can be improved to only $\tilde{O}(k)$ measurements. Other results on universal but approximate support recovery are also provided in this paper. All of our main recovery algorithms are simple and polynomial-time.


翻译:1BCS 中,一个高维信号的线性样本被量化为每个样本只有一位数(测量符号的标识)。 极端的定量化使得它成为比较普通的单指数或通用线性模型的有趣的案例研究。 同时,它也可以被视为学习二进制线性分解器或半空学习的“设计”版本。 假设最初的信号矢量是稀释的, 1BCS 中的现有结果要么旨在找到矢量的支持,要么在$\ epsilon$- ball 范围内接近信号。 本文的重点是支持恢复,这通常也有利于计算大约的信号恢复。 1BCSS的测量矩阵也是指一套测量方法,即学习一个双线性线性线性分解器或半空域学习。 由于普遍性, 只能知道 $\tilde_Theta} (k=2) 1bCS的测量结果是必需的, 也足以支持简单的矢量恢复( $xxxxlationalal) 。

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员