We propose a family of gradient reconstruction schemes based on the solution of over-determined systems by orthogonal or oblique projections. In the case of orthogonal projections, we retrieve familiar weighted least-squares gradients, but we also propose new direction-weighted variants. On the other hand, using oblique projections that employ cell face normal vectors we derive variations of consistent Green-Gauss gradients, which we call Taylor-Gauss gradients. The gradients are tested and compared on a variety of grids such as structured, locally refined, randomly perturbed, unstructured, and with high aspect ratio. The tests include quadrilateral and triangular grids, and employ both compact and extended stencils, and observations are made about the best choice of gradient and weighting scheme for each case. On high aspect ratio grids, it is found that most gradients can exhibit a kind of numerical instability that may be so severe as to make the gradient unusable. A theoretical analysis of the instability reveals that it is triggered by roundoff errors in the calculation of the cell centroids, but ultimately is due to truncation errors of the gradient reconstruction scheme, rather than roundoff errors. Based on this analysis, we provide guidelines on the range of weights that can be used safely with least squares methods to avoid this instability.


翻译:我们提出一系列梯度重建计划,其依据是以正正向或斜向预测的方式解决超定系统。在正向预测的情况下,我们检索了熟悉的加权最小平方梯度,但我们也提出了新的方向加权变方。另一方面,我们利用使用细胞面对正常矢量的斜度预测,我们得出了一致的绿色-高尔斯梯度的变异,我们称之为泰勒-高尔斯梯度。这些梯度是用结构化、本地改良、随机渗透、无结构化和高方位等各种网格测试和比较的。测试包括四边和三角网格,同时采用紧凑和扩展的斜度变方。另一方面,我们用斜度和加权法进行观察,对每种情况最佳的梯度选择和加权办法进行了观察。在高方位网格中,发现大多数梯度可以显示某种数字不稳定性,可能非常严重,使梯度无法使用。对不稳定性的理论分析表明,它是由计算中最小的基质错误引起的。测试包括四边网格和三角网格网格的三角网格,最终可以用来进行这种梯度分析。我们用来进行这种梯度的梯度的梯度的梯度的梯度分析,这种梯度的梯度的梯度分析是用来进行这种梯度的梯度的梯度的梯度的梯度的梯度的梯度的梯度的梯度的梯度的梯度的梯度的梯度分析,因为我们的梯度的梯度的梯度的梯度的梯度的梯度的梯度的梯度的梯度分析,而先是用来进行。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员