As a primitive 3D data representation, point clouds are prevailing in 3D sensing, yet short of intrinsic structural information of the underlying objects. Such discrepancy poses great challenges on directly establishing correspondences between point clouds sampled from deformable shapes. In light of this, we propose Neural Intrinsic Embedding (NIE) to embed each vertex into a high-dimensional space in a way that respects the intrinsic structure. Based upon NIE, we further present a weakly-supervised learning framework for non-rigid point cloud registration. Unlike the prior works, we do not require expansive and sensitive off-line basis construction (e.g., eigen-decomposition of Laplacians), nor do we require ground-truth correspondence labels for supervision. We empirically show that our framework performs on par with or even better than the state-of-the-art baselines, which generally require more supervision and/or more structural geometric input.
翻译:作为原始的 3D 数据代表, 3D 感测中普遍存在点云, 但却缺少基本物体的内在结构信息。 这种差异在直接建立从变形形状中取样的点云之间的对应关系方面构成了巨大的挑战。 有鉴于此, 我们提议以尊重内在结构的方式将每个脊椎嵌入高维空间。 基于 NIE, 我们进一步为非硬点云的登记提供了一个薄弱的、 监督不力的学习框架。 与先前的工程不同, 我们不需要扩展和敏感的离线基建构( 例如, Laplaceans 的eigen脱形), 我们也不需要地铁对应标志来进行监督。 我们的经验显示, 我们的框架与最先进的基线相当, 甚至比最先进的基准还要好, 通常需要更多的监督和/ 结构性的几何输入 。</s>