Repeated off-chip memory accesses to DRAM drive up operating power for data-intensive applications, and SRAM technology scaling and leakage power limits the efficiency of embedded memories. Future on-chip storage will need higher density and energy efficiency, and the actively expanding field of emerging, embeddable non-volatile memory (eNVM) technologies is providing many potential candidates to satisfy this need. Each technology proposal presents distinct trade-offs in terms of density, read, write, and reliability characteristics, and we present a comprehensive framework for navigating and quantifying these design trade-offs alongside realistic system constraints and application-level impacts. This work evaluates eNVM-based storage for a range of application and system contexts including machine learning on the edge, graph analytics, and general purpose cache hierarchy, in addition to describing a freely available (http://nvmexplorer.seas.harvard.edu/) set of tools for application experts, system designers, and device experts to better understand, compare, and quantify the next generation of embedded memory solutions.


翻译:在数据密集应用方面,重复的芯片内存访问DRAM驱动了运行能力,而SRAM技术的扩大和泄漏能力限制了嵌入记忆的效率。未来的芯片储存将需要更高的密度和能源效率,而新兴的、可嵌入的非挥发性内存(ENVM)技术正在积极扩大,为满足这一需求提供了许多潜在的候选人。每一项技术建议都提出了在密度、读、写和可靠性特点方面不同的权衡取舍,我们提出了一个全面框架,用以在现实的系统限制和应用层面影响的同时,对设计取舍进行导航和量化。这项工作评估了基于 NVM 的储存,用于一系列应用和系统环境,包括边缘的机器学习、图解算和一般目的缓存等级,此外还描述了一套可供应用专家、系统设计师和设备专家自由使用的工具(http://nvmexplorer.se.sea.harvard.edu/),以便更好地了解、比较和量化下一代嵌入式内存解决办法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员