Data quality is a common problem in machine learning, especially in high-stakes settings such as healthcare. Missing data affects accuracy, calibration, and feature attribution in complex patterns. Developers often train models on carefully curated datasets to minimize missing data bias; however, this reduces the usability of such models in production environments, such as real-time healthcare records. Making machine learning models robust to missing data is therefore crucial for practical application. While some classifiers naturally handle missing data, others, such as deep neural networks, are not designed for unknown values. We propose a novel neural network modification to mitigate the impacts of missing data. The approach is inspired by neuromodulation that is performed by biological neural networks. Our proposal replaces the fixed weights of a fully-connected layer with a function of an additional input (reliability score) at each input, mimicking the ability of cortex to up- and down-weight inputs based on the presence of other data. The modulation function is jointly learned with the main task using a multi-layer perceptron. We tested our modulating fully connected layer on multiple classification, regression, and imputation problems, and it either improved performance or generated comparable performance to conventional neural network architectures concatenating reliability to the inputs. Models with modulating layers were more robust against degradation of data quality by introducing additional missingness at evaluation time. These results suggest that explicitly accounting for reduced information quality with a modulating fully connected layer can enable the deployment of artificial intelligence systems in real-time settings.
翻译:缺少数据会影响准确性、校准和复杂模式中的特性归属。 开发者经常在精心整理的数据集上培训模型,以尽量减少缺失的数据偏差; 然而, 这会降低此类模型在生产环境中的可用性, 如实时医疗记录。 因此, 使机读模型对缺失的数据具有强大性是实际应用的关键。 一些分类者自然处理缺失的数据, 其它的分类者, 如深神经网络, 并不是为未知值设计的。 我们提议对神经网络进行新的修改, 以减轻缺失数据的影响。 这种方法是由生物神经网络实施的神经调节所启发的。 我们的提议取代了完全连接的层的固定重量, 其功能是每次输入时增加投入( 可靠性评分), 模拟电离层到根据其他数据的存在而上下调输入的能力。 这些调制函数可以与主要任务一起使用多层连接的监理器进行联合学习。 我们测试了我们完全连接的神经调节层, 由生物神经网络网络网络进行神经调节, 测试了全连接的神经调节质量结构, 以更稳健性化的系统 性化性化的性化性化性化性化 测试, 向常规数据结构 生成 改进 改进 改进了 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 和 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进 改进