An automatic evidential segmentation method based on Dempster-Shafer theory and deep learning is proposed to segment lymphomas from three-dimensional Positron Emission Tomography (PET) and Computed Tomography (CT) images. The architecture is composed of a deep feature-extraction module and an evidential layer. The feature extraction module uses an encoder-decoder framework to extract semantic feature vectors from 3D inputs. The evidential layer then uses prototypes in the feature space to compute a belief function at each voxel quantifying the uncertainty about the presence or absence of a lymphoma at this location. Two evidential layers are compared, based on different ways of using distances to prototypes for computing mass functions. The whole model is trained end-to-end by minimizing the Dice loss function. The proposed combination of deep feature extraction and evidential segmentation is shown to outperform the baseline UNet model as well as three other state-of-the-art models on a dataset of 173 patients.
翻译:根据Dempster-Shafer 理论和深层学习,提议采用基于Dempster-Shafer 理论的自动证据分解法,从三维波斯射线射线成像(PET)和光学成像(CT)图像中分解淋巴瘤。该结构由深特征解剖模块和一个证据层组成。特征提取模块使用编码器分解器框架从 3D 输入中提取语体特性矢量。证据层随后在特征空间中使用原型来计算每个 voxel 的信仰功能,以量化在此位置存在或不存在淋巴瘤的不确定性。根据使用距离与计算质量函数原型不同的方式,对两个证据层进行了比较。整个模型经过培训,通过最大限度地减少 Dice 损失功能,最终到最终。拟议的深特征提取和证据分解组合将超过基线UNet 模型,以及在173个患者数据集上的其他三个最先进的模型。