Exoplanets in protoplanetary disks cause localized deviations from Keplerian velocity in channel maps of molecular line emission. Current methods of characterizing these deviations are time consuming, and there is no unified standard approach. We demonstrate that machine learning can quickly and accurately detect the presence of planets. We train our model on synthetic images generated from simulations and apply it to real observations to identify forming planets in real systems. Machine learning methods, based on computer vision, are not only capable of correctly identifying the presence of one or more planets, but they can also correctly constrain the location of those planets.
翻译:原行星磁盘的外行星在分子线排放的频道分布图中造成与开普勒速度的局部偏差。目前确定这些偏差的方法耗费时间,而且没有统一的标准方法。我们证明机器学习能够快速准确地探测行星的存在。我们用模拟产生的合成图像来培训我们的模型,并将其应用到真实的观测中,以识别真实系统中的行星的形成。基于计算机视觉的机器学习方法不仅能够正确识别一个或多个行星的存在,而且能够正确地限制这些行星的位置。