Robustness of neural networks has recently attracted a great amount of interest. The many investigations in this area lack a precise common foundation of robustness concepts. Therefore, in this paper, we propose a rigorous and flexible framework for defining different types of robustness properties for classifiers. Our robustness concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy, and that it should be defined in purely mathematical terms without reliance on algorithmic procedures for its measurement. We develop a very general robustness framework that is applicable to any type of classification model, and that encompasses relevant robustness concepts for investigations ranging from safety against adversarial attacks to transferability of models to new domains. For two prototypical, distinct robustness objectives we then propose new learning approaches based on neural network co-training strategies for obtaining image classifiers optimized for these respective objectives.


翻译:神经网络的坚固性最近引起了很大的兴趣。 这一领域的许多调查缺乏稳健性概念的确切共同基础。 因此,在本文件中,我们提出一个严格和灵活的框架,用于界定分类者不同类型的稳健性属性。 我们的稳健性概念基于这样的假设:一个分类者的稳健性应当被视为一种独立于准确性的属性,并且应当以纯数学术语来界定,而不必依赖算法程序进行测量。 我们开发了一个非常普遍的稳健性框架,适用于任何类型的分类模式,并包含相关的稳健性概念,用于调查,从防范对抗性攻击的安全到模型的可转移性到新的领域。 对于两个原型的、明显的稳健性目标,我们随后提出了基于神经网络共同培训战略的新学习方法,以便为这些相关目标优化图像分类者。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员