We analyze 14,651 HIV1 reverse transcriptase (HIV RT) sequences from the Stanford HIV Drug Resistance Database labeled with treatment regimen in order to study the evolution this enzyme under drug selection in the clinic. Our goal is to identify distinct sectors of HIV RT's sequence space that are undergoing evolution as a way to identify individual selections and/or evolutionary solutions. We utilize Uniform Manifold Approximation and Projection (UMAP), a graph-based dimensionality reduction technique uniquely suited for the detection of non-linear dependencies and visualize the results using an unsupervised clustering algorithm based on density analysis. Our analysis produced 21 distinct clusters of sequences. Supporting the biological significance of these clusters, they tend to represent phylogenetically related sequences with strong correspondence to distinct treatment regimens. Thus, this method for visualization of areas of HIV RT undergoing evolution can help infer information about selective pressures, although it is correlative. The mutation signatures associated with each cluster may represent the higher-order epistatic context facilitating these evolutionary pathways, information that is generally not accessible by other types of mutational co-dependence analyses.
翻译:我们分析了斯坦福艾滋病毒抗药性数据库(HIV RT)14,651 HIV1逆向转录酶(HIV RT)序列,该序列由斯坦福艾滋病毒抗药性数据库(HIV RT)进行,贴有治疗疗法标签,以研究临床药物选择中的这种酶的演化过程。我们的目标是确定正在演化的HIV RT序列空间的不同部门,以此确定个别选择和(或)进化解决方案。我们使用统一的 MManidel 相近和预测(UMAP),这是一种基于图形的减少维度技术,它特别适合于检测非线性依赖性依赖性,并且利用基于密度分析的未经监督的集群算法将结果视觉化。我们的分析产生了21个不同的序列组。支持这些组的生物重要性,它们往往代表着与不同治疗疗法疗法的强烈对应的生理相关序列。因此,这种对正在演化的HIV RT 区域进行视觉化的方法有助于推断选择性压力的信息,尽管它具有关联性。与每个组相关的突变特征可能代表着更高层次的认知环境,便利这些进化路径,而其他类型的突变式共同分析一般无法获取的信息。