We analyze 14,651 HIV1 reverse transcriptase (HIV RT) sequences from the Stanford HIV Drug Resistance Database labeled with treatment regimen in order to study the evolution this enzyme under drug selection in the clinic. Our goal is to identify distinct sectors of HIV RT's sequence space that are undergoing evolution as a way to identify individual selections and/or evolutionary solutions. We utilize Uniform Manifold Approximation and Projection (UMAP), a graph-based dimensionality reduction technique uniquely suited for the detection of non-linear dependencies and visualize the results using an unsupervised clustering algorithm based on density analysis. Our analysis produced 21 distinct clusters of sequences. Supporting the biological significance of these clusters, they tend to represent phylogenetically related sequences with strong correspondence to distinct treatment regimens. Thus, this method for visualization of areas of HIV RT undergoing evolution can help infer information about selective pressures, although it is correlative. The mutation signatures associated with each cluster may represent the higher-order epistatic context facilitating these evolutionary pathways, information that is generally not accessible by other types of mutational co-dependence analyses.


翻译:我们分析了斯坦福艾滋病毒抗药性数据库(HIV RT)14,651 HIV1逆向转录酶(HIV RT)序列,该序列由斯坦福艾滋病毒抗药性数据库(HIV RT)进行,贴有治疗疗法标签,以研究临床药物选择中的这种酶的演化过程。我们的目标是确定正在演化的HIV RT序列空间的不同部门,以此确定个别选择和(或)进化解决方案。我们使用统一的 MManidel 相近和预测(UMAP),这是一种基于图形的减少维度技术,它特别适合于检测非线性依赖性依赖性,并且利用基于密度分析的未经监督的集群算法将结果视觉化。我们的分析产生了21个不同的序列组。支持这些组的生物重要性,它们往往代表着与不同治疗疗法疗法的强烈对应的生理相关序列。因此,这种对正在演化的HIV RT 区域进行视觉化的方法有助于推断选择性压力的信息,尽管它具有关联性。与每个组相关的突变特征可能代表着更高层次的认知环境,便利这些进化路径,而其他类型的突变式共同分析一般无法获取的信息。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员