This paper concerns the convergence of empirical measures in high dimensions. We propose a new class of metrics and show that under such metrics, the convergence is free of the curse of dimensionality (CoD). Such a feature is critical for high-dimensional analysis and stands in contrast to classical metrics ({\it e.g.}, the Wasserstein distance). The proposed metrics originate from the maximum mean discrepancy, which we generalize by proposing specific criteria for selecting test function spaces to guarantee the property of being free of CoD. Therefore, we call this class of metrics the generalized maximum mean discrepancy (GMMD). Examples of the selected test function spaces include the reproducing kernel Hilbert space, Barron space, and flow-induced function spaces. Three applications of the proposed metrics are presented: 1. The convergence of empirical measure in the case of random variables; 2. The convergence of $n$-particle system to the solution to McKean-Vlasov stochastic differential equation; 3. The construction of an $\varepsilon$-Nash equilibrium for a homogeneous $n$-player game by its mean-field limit. As a byproduct, we prove that, given a distribution close to the target distribution measured by GMMD and a certain representation of the target distribution, we can generate a distribution close to the target one in terms of the Wasserstein distance and relative entropy. Overall, we show that the proposed class of metrics is a powerful tool to analyze the convergence of empirical measures in high dimensions without CoD.


翻译:本文涉及高层面经验措施的趋同性。 我们建议了一个新的衡量标准类别, 并表明, 在这类衡量标准下, 趋同性是不受维度诅咒的( CoD ) 。 这种特征对于高维度分析至关重要, 并与传统的衡量标准( 例如, 瓦塞尔斯坦距离 ) 形成对照。 拟议的衡量标准来自最大平均差异, 我们通过提出具体标准来选择测试功能空间, 以保证没有COD 的属性。 因此, 我们称这一类衡量标准为通用的最大平均差异( GMD ) 。 所选测试功能空间的例子包括再生产内尔伯特空间、 Barron空间和流动引发的功能空间。 所拟议的衡量标准有三种应用: 1. 随机变量情况下的经验性衡量标准趋同性; 2. 美元-粒子系统与Mckecan-Vlasov 随机差异方程式解决方案的趋同性。 因此, 我们称, 美元-Nash 平衡, 以不以近一美元平方平方平价的游戏形式,, 以其平均平方平方平方平方平方平方平方平方平方平方平方平方平的比的计算, 比例, 显示我们所测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
40+阅读 · 2022年9月19日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员