We consider the following problem: Given a set S of at most n elements from a universe of size m, represent it in memory as a bit string so that membership queries of the form "Is x in S?" can be answered by making at most t probes into the bit string. Let s(m,n,t) be the minimum number of bits needed by any such scheme. We obtain new upper bounds for s(m,n,t=2), which match or improve all the previously known bounds. We also consider the quantum version of this problem and obtain improved upper bounds.
翻译:我们考虑以下问题: 给一个大小为 m 的宇宙最多为 n 元素的 S 组设置, 将其在记忆中代表成一个小字符串, 这样会籍查询“ x in S? ” 的形式可以通过在比特字符串中最多进行 t 的探测来解答。 让 s( m, n, t) 成为任何这种方案所需的最小比特数。 我们为 s( m,n, t=2) 获得新的上界值, 以匹配或改进所有先前已知的界限。 我们还考虑这一问题的量子版本, 并获得更好的上界值 。