For multivariate nonparametric regression, doubly penalized ANOVA modeling (DPAM) has recently been proposed, using hierarchical total variations (HTVs) and empirical norms as penalties on the component functions such as main effects and multi-way interactions in a functional ANOVA decomposition of the underlying regression function. The two penalties play complementary roles: the HTV penalty promotes sparsity in the selection of basis functions within each component function, whereas the empirical-norm penalty promotes sparsity in the selection of component functions. We adopt backfitting or block minimization for training DPAM, and develop two suitable primal-dual algorithms, including both batch and stochastic versions, for updating each component function in single-block optimization. Existing applications of primal-dual algorithms are intractable in our setting with both HTV and empirical-norm penalties. Through extensive numerical experiments, we demonstrate the validity and advantage of our stochastic primal-dual algorithms, compared with their batch versions and a previous active-set algorithm, in large-scale scenarios.
翻译:对于多变量的非参数回归,最近提出了双重处罚的ANOVA模型(DPAM)建议,使用分级总变异(HTVs)和实证规范作为对组成部分功能的惩罚,例如主要效应和在功能性 ANOVA 下拆解基本回归函数中的多路互动。两种处罚起着互补作用:HTV处罚在选择每个组成部分功能的基础功能方面促进宽度,而经验-中温处罚则在选择组成部分功能方面促进宽度。我们为培训DPM采用了回装或块最小化,并开发了两种合适的初等原始算法,包括批量和随机版本,用于在单块优化中更新每个组成部分功能。在我们的环境下,现有的初等算法应用与HTV和实证-中调的处罚是难以操作的。我们通过广泛的数字实验,展示了我们随机初等算算算法的有效性和优势,在大规模情景下,与其批量版本和先前的动态算法相比,我们展示了这些算法的有效性和优势。